

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO

QUÍMICA - 2025/2026

CADERNO DE QUESTÕES

FOLHA DE DADOS

Considere:

- Constante universal dos gases ideais: $R = 8.3 \text{ J.(mol.K)}^{-1} = 0.082 \text{ atm.L.(mol.K)}^{-1}$
- Constante de Faraday = 96480 C.mol^{-1}
- Constante de Henry para o CO_2 a 300 K = 3,3 \times 10⁻² mol.(atm.L)⁻¹
- Entalpia padrão de formação a 25 °C, em kJ.mol⁻¹:

$$\begin{array}{lll} \Delta H^o_f(\mathrm{CO_2(g)}) = -394, 0 & \Delta H^o_f(\mathrm{H_2O(g)}) = -242, 0 & \Delta H^o_f(\mathrm{Cu_2CO_3(OH)_2(s)}) = -1054, 0 \\ \Delta H^o_f(\mathrm{CO_2(aq)}) = -413, 8 & \Delta H^o_f(\mathrm{H_2O(I)}) = -285, 8 & \Delta H^o_f(\mathrm{HCO_3}^-(\mathrm{aq})) = -692, 0 \\ \Delta H^o_f(\mathrm{H^+(aq)}) = 0, 00 & \end{array}$$

• Energia Livre de Gibbs padrão de formação a 25 °C, em kJ.mol⁻¹:

$$\begin{array}{ll} \Delta G^o_f(\mathrm{CO_2(aq)}) = -386, 0 & \Delta G^o_f(\mathrm{H_2O(I)}) = -237, 1 & \Delta G^o_f(\mathrm{HCO_3}^-(\mathrm{aq})) = -586, 8 \\ \Delta G^o_f(\mathrm{H^+(aq)}) = 0, 00 & \end{array}$$

- Entropia padrão de fusão do cobre a 1 atm: $\Delta S_{fus}^o(\mathrm{Cu}) =$ 10,0 J.(mol.K) $^{-1}$
- $\log x \simeq 0.434 \times \ln x$
- $\log 2 \simeq 0.301$
- $\log 3 \simeq 0,477$

Tabela Periódica dos Elementos Químicos:

	1																	18
	1 1.0079]																2 4.0025
1	H Hidrogênio	2											13	14	15	16	17	He Hélio
	3 6.941	4 9.0122											5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
2	Li Lítio	Be Berílio											B Boro	C Carbono	N Nitrogênio	O Oxigênio	F Flúor	Ne Neônio
	11 22.990	12 24.305											13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
3	Na Sódio	Mg Magnésio	3	4	5	6	7	8	9	10	11	12	Al Alumínio	Si Silício	P Fósforo	S Enxofre	CI Cloro	Ar Argônio
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.8
4	K Potássio	Ca Cálcio	Sc Escândio	Ti Titânio	V Vanádio	Cr Cromo	Mn Manganês	Fe Ferro	Co Cobalto	Ni Níquel	Cu Cobre	Zn Zinco	Ga Gálio	Ge Germânio	As Arsênio	Se Selênio	Br Bromo	Kr Criptônio
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 96	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.6	53 126.9	54 131.29
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe
	Rubídio	Estrôncio	Ítrio	Zircônio	Nióbio	Molibdênio	Tecnécio	Rutênio	Ródio	Paládio	Prata	Cádmio	Índio	Estanho	Antimônio	Telúrio	lodo	Xenônio
	55 132.91	56 137.33	57-71	72 178:49	73 . 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 209	85 210	86 222
6	Cs Césio	Ba Bário	La-Lu Lantanídeos	Hf Háfnio	Ta Tântalo	W Tungstênio	Rênio	Os Ósmio	ir '''Irídio	Pt Platina	Au Ouro	Hg Mercúrio	TI Tálio	Pb Chumbo	Bi Bismuto	Po Polônio	At Astato	Rn Radônio
	87 223	88 226	89-103	104 267	105 268	106 269	107 270	108 269	109 277	110 281	111	112 285	113 286	114 290	115 290	116 293	117 294	118 294
7	Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	MOt	Ds	Rg	Cn	Nh	- Fl	Mc	Lv	Ts	Og
	Frâncio	Rádio	Actinideos	Rutherfórdio	Dúbnio	Seabórgio	Bóhrio	Hássio	Meitnério	Darmstádtio	Roentgênio	Copernício	Nihônio	Fleróvio	Moscóvio	Livermório	Tennesso	Oganessônio

				57 138.91	58 140.12	59 140.91	60 144.24	61 145	62 150.36	63 151.96	64 157.25	65 158,93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97
				La Lantânio	Ce Cério	Pr Praseodímio	Nd Neodímio	Pm Promécio	Sm Samário	Eu Európio	Gd Gadolínio	Tb Térbio	Dy Disprósio	Ho Hôlmio	Er Érbio	Tm Túlio	Yb Itérbio	Lu · · · Lutécio
	z massa															*******		
	Símb.	artif.		89 227	90 232.04	91 231.04	92 238.03			95 243	96 247	97 247	98 251	99 252	100 257	101 258	102 259	103 262
	Nome			Ac Actínio	Th Tório	Pa Protactínio	U Urânio	Np Neptúnio	Pu Plutônio	Am Americio	Cm Cúrio	Bk Berquélio	Cff Califórnio	Es Einstênio	Finn	Mod Mendelévio	N⊚ Nobélio	Laurêncio
				Actinio	10110	· · · · · · · · · · · · · · · · · · · ·	Granio	Lioptoino	· idioilio	AIIIGIICIO	Guilo	Sorquono	Californio	ZITISTELIIO	remio	ividiluelevio	MODEIIO	Laurencio

Fonte: adaptada dos sites https://acervodigital.ufpr.br/handle/1884/40332 e https://www.tabelaperiodica.org/

1º QUESTÃO Valor: 1,0

Um metal M forma o sal $MC\ell_2$. A eletrólise desse sal fundido, com uma corrente igual a 0,4 A durante 6,7 horas produziu 4,38 gramas do metal sólido.

Determine qual elemento da Tabela Periódica é o metal M.

2º QUESTÃO Valor: 1,0

Uma molécula orgânica A, de fórmula molecular $C_5H_{11}C\ell$, sofre desidro-halogenação formando B. Quando B sofre ozonólise, gera formaldeído. Quando B sofre reação de hidratação, produz o composto C, o qual não reage com KMnO₄ em meio ácido.

Determine:

- a) a função orgânica presente no composto C;
- b) as estruturas moleculares de A, B e C.

3º QUESTÃO Valor: 1,0

O acetato de linalila é um composto orgânico que contém átomos de carbono, hidrogênio e oxigênio na razão 6:10:1, respectivamente.

Sabe-se que cada molécula de acetato de linalila:

- i) contém dois átomos de oxigênio;
- ii) possui cadeia principal com oito átomos de carbono;
- iii) representa um dieno não conjugado nas posições 1 e 6;
- iv) tem duas metilas em uma mesma extremidade de cadeia;
- v) tem uma metila e o grupo acetato ligados ao carbono alílico, não terminal, de menor impedimento espacial.

Diante dessas informações, apresente:

- a) a fórmula estrutural plana do acetato de linalila;
- b) o polímero possivelmente formado considerando somente a reação de poliadição na dupla ligação mais substituída.

4ª QUESTÃO Valor: 1,0

Águas de rejeito de um processo industrial de pH neutro necessitam ser purificadas de um contaminante, um metal pesado, cujo sal vem dissolvido nestas águas. Sabe-se que o contaminante em questão precipita somente quando pH \leq 4, podendo ser depois retirado por sucção. Para tanto, diariamente, os efluentes são armazenados em piscinas de decantação de 200.000 L cada, sendo tratados com ácido acético, de constante de dissociação 2,0 \times 10⁻⁵, para diminuir o pH e obter a precipitação.

Determine a massa de ácido acético mínima necessária para tratar cada piscina.

5º QUESTÃO Valor: 1,0

Na queima de uma massa m_1 de metano a pressão constante, ocorreu combustão completa com formação de água líquida e foram liberados 324 kJ de energia. Em outra queima, nas mesmas condições, uma massa m_2 de oxigênio foi consumida e a energia liberada foi de 81 kJ.

Determine a razão entre m_1 e m_2 .

6ª QUESTÃO Valor: 1,0

Para a neutralização de 0,18 g de um ácido carboxílico, são gastos 30 mL de uma solução 0,1 M de NaOH. A densidade do vapor deste ácido é trinta vezes a do hidrogênio, nas mesmas condições.

Considerando a dissociação completa desse ácido, forneça seu nome e sua estrutura molecular.

7º QUESTÃO Valor: 1,0

O mineral malaquita $[Cu_2CO_3(OH)_2]$, de ocorrência natural, pode ser utilizado para a obtenção de cobre líquido a partir das 3 (três) etapas abaixo:

$$\begin{array}{c} {\rm Cu_2CO_3(OH)_2(s)} \stackrel{\Delta}{\longrightarrow} {\rm 2CuO(s)} + {\rm H_2O(g)} + {\rm CO_2(g)} \\ \\ {\rm 2CuO(s)} + {\rm C(s, grafite)} \longrightarrow {\rm 2Cu(s)} + {\rm CO_2(g)} \\ \\ {\rm Cu(s)} \longrightarrow {\rm Cu(l)} \end{array}$$

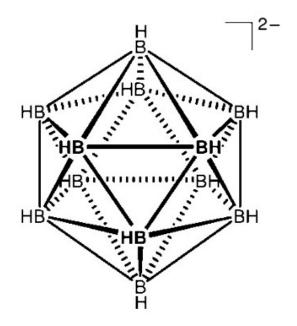
Como a reação global de formação de cobre líquido a partir de malaquita e carbono sólido é endotérmica, realizou-se um estudo para verificar a quantidade necessária de placas solares fotovoltaicas, para atender o seu consumo energético na indústria.

Considere que:

- i) cada placa solar fotovoltaica produz, em média, 2 MJ/h;
- ii) as energias livres de Gibbs do cobre, em kJ/mol, nas fases sólida e líquida podem ser descritas respectivamente pelas expressões em função da temperatura T (em K) abaixo, na faixa de 298 a 1358 K:

$$G_S = -7770,5 + 130,0T - 24,1TlnT - 2,7 \times 10^2 + 1,3 \times 10^{-7}T^3 + \frac{52478,0}{T}$$

$$G_L = 5194.3 + 120.0T - 24.1T \ln T - 2.7 \times 10^2 + 1.3 \times 10^{-7} T^3 + \frac{52478.0}{T}$$


iii) as entalpias de formação (ΔH_f^o) e as entropias molares (S^o) dos compostos químicos são constantes na faixa de 298 a 1358 K.

Calcule, nesse contexto, o número mínimo de placas solares fotovoltaicas utilizadas em 1 (uma) hora para a geração de 213,36 kg de cobre líquido a partir de malaquita e carbono sólido.

8ª QUESTÃO Valor: 1,0

O composto B₂H₆ possui apenas 12 elétrons de valência compartilhados entre 8 centros atômicos. Sua estrutura molecular é representada por

em que as ligações B–H–B são diferentes das ligações covalentes típicas. Elas se estabelecem a partir de três centros atômicos que compartilham dois elétrons. Comportamento semelhante é observado no ânion dodecaborato $(B_{12}H_{12})^{2-}$, o qual possui um arranjo icosaédrico, conforme ilustrado abaixo.

Determine a deficiência percentual de elétrons de valência do ânion dodecaborato em relação ao esperado, caso houvesse somente ligações covalentes típicas com 2 centros atômicos que compartilham 2 elétrons.

9º QUESTÃO Valor: 1,0

Nas últimas décadas, tem sido observado um aumento substancial da concentração de dióxido de carbono na atmosfera terrestre. Pesquisas recentes estimam que, sem a adoção de medidas mitigadoras da emissão de poluentes, essa concentração de CO₂ deve atingir cerca de 545 ppm, base molar, no ano de 2050.

- a) Calcule a concentração molar de CO₂ dissolvido em água pura a 25 °C, assumindo equilíbrio com a atmosfera nas condições estimadas para o ano de 2050.
- b) Com base na concentração obtida no item anterior, calcule o valor do pH da solução resultante.
- c) Considere uma solução em equilíbrio com o ${\rm CO_2}$ atmosférico. Se a temperatura for aumentada e a concentração de ${\rm CO_2}$ dissolvido for mantida constante, o pH da solução aumentará ou diminuirá? Justifique.

10º QUESTÃO

Valor: 1,0

Em um experimento específico, conduzido em atmosfera ambiente, pesquisadores analisaram o decaimento de uma parte de uma série radioativa, como representado abaixo.

$$...\longrightarrow {}^{227}_{89}X\longrightarrow {}^{227}_{90}J\longrightarrow {}^{223}_{88}L\longrightarrow {}^{219}_{86}Z\longrightarrow {}^{215}_{84}T\longrightarrow ...$$

Considere as condições experimentais nas CNTP e que o tempo de meia-vida do nuclídeo **Z** é de aproximadamente 4 segundos.

Diante do exposto:

- a) escreva a equação estequiométrica da série radioativa, incluindo as partículas emitidas para cada desintegração, de forma a estabelecer o correto balanço das cargas elétricas e dos números de massas nucleares;
- b) demonstre a família radioativa a que os isótopos da série pertencem;
- c) para o nuclídeo Z, calcule a vida-média e a constante de decaimento do isótopo, apresentando as unidades no SI.