INSTITUTO TECNOLÓGICO DE AERONÁUTICA

VESTIBULAR 2025

2ª FASE

MATEMÁTICA

INSTRUÇÕES

- 1. O tempo total para resolução da prova é de quatro horas.
- 2. Não é permitido deixar o local de exame antes de decorridas **duas horas** do início da prova.
- 3. Você poderá usar **apenas** caneta esferográfica de corpo transparente com tinta preta, lápis ou lapiseira, borracha, régua transparente simples e compasso. **É proibido portar qualquer outro material escolar.**
- 4. Certifique-se de que você recebeu um caderno de questões e um caderno de soluções.
- 5. Não é permitido destacar qualquer das folhas que compõem os cadernos de questões ou de soluções.
- 6. O caderno de questões é composto por **10 questões dissertativas** (numeradas de 01 a 10).
- 7. A resolução das questões deve ser apresentada nos respectivos cadernos de soluções, **no local destinado a cada questão**.
- 8. Apenas as resoluções presentes nos espaços destinados para uma dada questão serão consideradas na correção dessa questão. Não será considerado para correção o conteúdo das páginas de rascunho.
- 9. Nas questões que envolvem cálculo matemático, as **expressões numéricas devem** ser resolvidas até o final. Em caso contrário, poderá haver prejuízo de nota atribuída à solução.
- 10. É obrigatória a devolução dos cadernos de questões e de soluções, sob pena de desclassificação do candidato.
- 11. No dia 04/12/2024, serão divulgadas as médias obtidas nas provas da segunda fase.
- 12. Aguarde o aviso para iniciar a prova. Ao terminá-la, avise o fiscal e aguarde-o no seu lugar.

MATEMÁTICA

Convenções: Considere o sistema de coordenadas cartesiano, a menos que haja indicação contrária. Os eixos horizontal e vertical são indicados respectivamente por O_x e O_y , e o centro do sistema, por O.

i : denota a unidade imaginária, $i^2 = -1$.

 \overline{AB} : denota o segmento de reta de extremidades nos pontos $A \in B$.

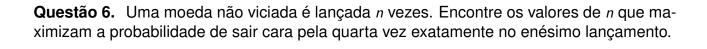
AB : denota a reta que passa pelos pontos A e B.

 $m(\overline{AB})$: denota o comprimento do segmento \overline{AB} . $\max\{i,j\}$: denota o maior dentre os valores i e j $\det A$: denota o determinante da matriz A. A^T : denota a transposta da matriz A. : denota a inversa da matriz A.

 (a_{ij}) : representa uma matriz cuja entrada na linha i e coluna j é indexada por a_{ij} .

Questão 1. Encontre os valores reais a e b tais que o polinômio $p(x) = x^{57} + ax^{14} + bx^7 + 1$, ao ser dividido por $x^2 - x + 1$, deixe resto 2x + 1.

Questão 2. Seja E uma elipse com eixo focal no eixo O_x do sistema de coordenadas cartesiano. O centro de E é o ponto (r,0), com r>0, sua excentricidade é $\frac{\sqrt{2}}{2}$, e seu semieixo maior mede $\sqrt{2}$. Considerando os pontos $(x,y)\in E$, determine o valor de r para que $\frac{y}{x}$ tenha valor máximo igual a 1.

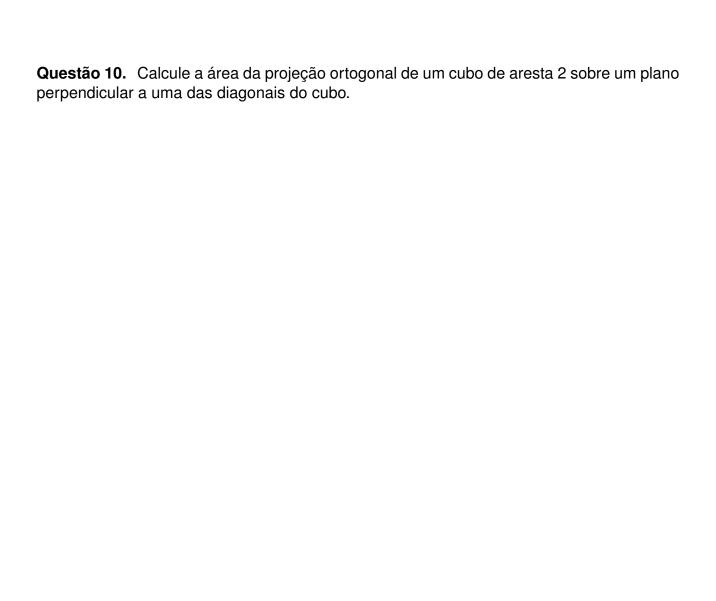

Questão 3. Sejam α , $\beta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ tais que

$$\operatorname{sen}(lpha)-\operatorname{sen}(eta)=rac{1}{4}\quad \operatorname{e}\quad \operatorname{sen}(lpha)-2\mathrm{sen}(eta)+\cos(eta)=rac{3}{4}.$$

Calcule o valor de $sen(\alpha + \beta)$.

Questão 4. Seja ABC um triângulo de lados $m(\overline{AB}) = 6$, $m(\overline{AC}) = 10$ e $m(\overline{BC}) = 14$. Calcule o raio da circunferência externa ao triângulo ABC que tangencia simultaneamente o segmento \overline{BC} e as retas suportes AB e AC.

Questão 5. Usando as aproximações $\log_{10} 2 = 0$, 3010, $\log_{10} 3 = 0$, 4771 e $\log_{10} 7 = 0$, 8450, determine o primeiro algarismo (da esquerda para a direita) do resultado de 3^{100} .


Questão 7. Considere o polinômio $p(x) = x^3 + ax^2 + b$. Determine os valores reais $a \in b$, sabendo que:

I. p(x) tem uma raiz real dupla;

II. Os pontos $(x_1, 0)$, $(x_2, 0)$ e (0, b) são vértices de um triângulo retângulo, em que x_1 e x_2 são raizes disitintas de p(x).

Questão 8. Seja $A_k = (a_{ij})$ uma matriz quadrada de ordem k, em que $a_{ij} = \max\{i, j\}$ para todo i, j em $\{1, 2, \dots, k\}$. Determine $\sum_{k=1}^{2025} \det(A_k)$.

Questão 9. Determine a quantidade de matrizes 5×5 invertíveis e com entradas inteiras que satisfazem a propriedade $A^{-1} = A^{T}$.

RASCUNHO